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PAIRWISE INTERACTION OF DROPS OF MAGNETIC
EMULSION UNDER THE ACTION OF ROTATING

FIELD

B. E. Kashevskii UDC 532.5:538.6

Consideration is given to the dynamics of a pair of drops of a magnetic liquid that are suspended in a normal
liquid with relatively low viscosity under the action of a rotating field. Account is taken of hydrodynamic and
dipole-dipole interactions as well as of the electrodynamic torque due to the finite relaxation time of
magnetization of the magnetic liguid. It is shown that hydrodynamic interaction leads to the formation of a
rigid pair in the rotating field and the electrodynamic moment of forces governs its dynamics at large
frequencies, leading to a growth that is linear in the field frequency in the rotational velocity for the pair of
drops, whereas a pair of solid particles loses sensitivity to the field.

The practical interest in polarizable and magnetizable liquid-dispersed media is due to the possibility of
controlling their properties and transfer processes in them by the action of external fields. The electric or magnetic
interaction of particles of a dispersed phase serves, in many cases, as the main channel of the influence of the field.
Computer modeling of even comparatively small ensembles of particles enables us to obtain useful information about
the character of processes in the dispersion structurce that are induced by the field and about the influence of these
processes [l ]. The simplest case that permits a most accurate and complete investigation is that of pairwise
interaction in a rotating field, which has been considered experimentally [2, 3] for nonmagnetic particles in a
magnetic liquid and theoretically [4, 5] for soft-magnetic particles in a normal liquid.

In recent years, suspensions of an encapsulated magnetic liquid (colloid of nano-dimensional ferromagnetic
particles) [6] as well as magnetoliquid emulsions [7 ] have been investigated along with traditional dispersions of
solid particles. The pairwise interaction in these media under the action of a rotating field is considered in this
work.

Let the viscosity 7 of the magnetic liquid in the drop be higher than the viscosity # of the ambient medium.
This enables us to exclude from consideration any motion of the liquid in the drops that is different from quasisolid
motion.

The equilibrium magnetization of a magnetic liquid in a ficld of strength H is described by the Langevin

law:

Mg =ML (&), &=moH/kT, L=cthé—1/E.

where Mg is the saturation magnetization; mg is the magnetic moment of the colloidal ferroparticle; & is the

Boltzmann constant; 7 is the absolute temperature.
The rate of magnetization relaxation is determined by the characteristic time of Brownian rotational

diffusion of the colloidal particle

1, = 3wy kT,

where v is its "hydrodynamic” volume. Usually, 1, < 1074 sec.
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Let the rotational frequency of the field wg be low as compared to the inverse time of magnetic relaxation
{wot, << 1). Then the deviation of thc magnetization from cquilibrium is also small and is described by the lincar
relation (8 )

M= MO-T”—-J‘I—‘ h—-1, M, “J?—QXh ,

where 1, 7, arc the relaxation times; h is a unit vector in the direction of the ficld; Q is the hydrodynamic vorticity
of the magnetic liquid. In the approximation in question it coincides with the rotational velocity of the drop.
Because of the deviation from equilibrium the electrodynamic torque

T=WW X H,

acts on the drop (V is thc volume of the drop).

According to {4 ], for a pair of solid particles, the plane of rotation of the field is attracting. It can be shown
that this property also holds for a pair of drops. When considering plane motion (QxH = 0) we have in accordance
with (D)

T =dn V(v - Q). (2

The torque T is proportional to the velocity of rotation of the field about the drop, its volume, and the rotational
viscosity of the magnetic liquid #, = MgHr /4. The latter characterizes the energy dissipation in ordered rotation
of ferrocolloid particles in a viscous medium and can be determined by the relation (8]

M= L O EQ+LEO R LEH

where ¢y, is the hydrodynamic concentration of ferroparticles; a” is the phenomenological parameter of their
effective magnetic anisotropy. For typical magnetite-bascd magnetic liquids, a" changes within the limits of | —4
[81, and for a material with a larger valuc of the constant K of magnetic anisotropy, a’ = KVy/(2kT).

The rotational velocity of an isolated drop is determined from the condition of balance of the electrodynamic
moment of forces (2) and the moment of viscous friction forces —6V7€2 as

Q=w25/3+25, SE=n"n.

According to this relation, the rotational velocity of the drop is proportional to the rotational velocity of the field
and depends on the ratio of the rotational viscosity of the magnetic liquid to the viscosity of the ambient liquid S.
Within the limit S - o, the drop rotates with the frequency of the field.

There are magnetic and hydrodynamic interactions between two rotating drops. In a dipole approximation,
the magnetic force with which the first drop acts on the second is
4 6]

F=3mR (n + 2h (nh) — 5n (nh)z) .

Here m = VM is the magnetic moment of the drop; n is a unit vector in the direction from the center of the first
drop to the center of the sccond drop; R is the distance between the centers. The force —F acts on the first drop.
The vector of the hydrodynamic interaction force of the rotating drops given that the Reynolds number is
small is a lincar function of the pscudovector of the angular velocity of their rotation. The only possible form of
this dependence is f(R)nxQ. Consequently, hydrodynamic interaction does not affect drop motion along the line
of the centers and for them the result obtained in [S] for solid particles holds truc. According to [5], the growth
in viscous friction when particles with an ideally smooth surface approach each other leads to the formation of a
rigid pair in the rotating field. It is precisely the rigid pair that we consider next. The relative motion of drops is
absent in this pair, and its bchavior is completely described by the rotational velocity Q. The value of Q is
determined from the equation of balance of the viscous, dipole, and electrodynamic moments of forces
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Fig. 1. Rotational frequency of pair of magnetic drops suspended in a liquid
w vs rotational frequency of field wqg (w. is the critical synchronism frequency)
for Q=1 (1), 1072 (), 107% (3), and 0 (4).

pVQ =C(an X F + T), 4)

where C is a dimensionless form factor that characterizes the viscous friction of the rotating pair as compared with
the friction of a rotating sphere, and F and T are determined in (2) and (3). For the angle ¢ of pair orientation,
we have

de/dt = w, (1 — Q) sin 2 (wyt — ¢) + Qug, (5)

where

w, = 0.402TM-L7 (5)/18y, Q=5S() 28+ SE)

The value of C = 0.534 is found from a comparison with the result [5] for particles.

According to (5), up to the frequency wqg = w. the pair of drops rotates in synchronism with the ficld,
lagging behind by the angle (I/2)arcsin (wg/w,). In the following, the rotation is of a step character and, for its
average velocity, from (5) we obtain

w=wy—(1-Q) \/woz—w,z. (6)

In the case of Q =0, which means cquality to zero of the rotational viscosity of the magnectic liquid, rclation
(6) yields the result [§ ] for solid particles. The main difference between the drops and the particles manifests itsclf
in the region of high frequencies (wg > w,). Relation (6) here has the asymptotic

| 2
wZQwO-Fi(l = Q) (w, /wgy), (7

according to which rotation of a pair of particles (Q = 0) in the high-frequency region is attenuated as 1/wq whilce
the rotational frequency of a pair of drops grows proportionally with the frequency of the field. The dependence
wilwg) is presented for several values of Q in Fig. |,

Therefore, at the high-frequency limit when the comparatively slow processes of cross-linking are shut
down, dissipative interaction of the emulsion with the ficld can be maintained by noncquilibrium processes within
the drops.

We note that with a growth in the ficld frequency, when it becomes comparable with the inverse time of
magnectization relaxation (wgr, = 1), there arises a nced to allow for nonlincar cffects of relaxation. This is also
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decmonstrated by the results of the experiments [9]. In the final analysis, as wg — o, the emulsion will lose its

sensitivity to the ficld.
This investigation was financed by thc Fundamental Rescarch Fund of the Republic of Belarus.

NOTATION

t, time; M, magnetization; Mg, M, cquilibrium magnctization and saturation magnetization; H, magnetic
ficld strength; h, unit vector in direction of magnetic field; L(*), Langevin function; £, Langevin paramecter; g,
magnctic moment of ferroparticle; m, magnctic moment of drop; &4, Boltzmann constant; T, absolute tempcerature;
1., characteristic time of rotational diffusion; g, viscosity of carricr of magnetic liquid; 7., rotational viscosity of
magnetic liquid; », viscosity of cmulsion carrier; Q, hydrodynamic vortex and rotational velocity of drop; wy,
rotational frequency of field; w., quench frequency of pair rotation that is synchronous with field; w, average
rotational velocity of pair; T, electrodynamic torque; F, dipole interaction force; n, unit vector of erientation for

pair of drops.
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